Control of HCV Replication With iMIRs, a Novel Anti-RNAi Agent
نویسندگان
چکیده
MicroRNAs (miRNAs) serve important roles in regulating various physiological activities through RNA interference (RNAi). miR-122 is an important mediator of RNAi that is known to control hepatitis C virus (HCV) replication and is being investigated in clinical trials as a target for anti-HCV therapy. In this study, we developed novel oligonucleotides containing non-nucleotide residues, termed iMIRs, and tested their abilities to inhibit miR-122 function. We compared the inhibitory effects of iMIRs and locked nucleic acids (LNAs) on HCV replication in OR6 cells, which contained full-length HCV (genotype 1b) and a luciferase reporter gene. We found that RNA-type iMIRs with bulge-type, imperfect complementarity with respect to miR-122 were 10-fold more effective than LNAs in inhibiting HCV replication and functioned in a dose-dependent manner. Moreover, iMIR treatment of OR6 cells reduced HCV replication without inducing interferon responses or cellular toxicity. Based on these results, we suggest that iMIRs can inhibit HCV replication more effectively than LNAs and are therefore promising as novel antiviral agents.
منابع مشابه
Design, Synthesis, Molecular Modeling Studies and Biological Evaluation of N'-Arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide Derivatives as Novel Anti-HCV Agents
HCV-induced hepatitis is one of the most debilitating diseases. The limited number of anti-HCV drugs and drug-resistance necessitate developing of new scaffolds with different mode of actions. HCV non-structural protein 5B (NS5B) is an attractive target for development of novel inhibitors of HCV replication. In this paper, new N'-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazi...
متن کاملDesign, Synthesis, Molecular Modeling Studies and Biological Evaluation of N'-Arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide Derivatives as Novel Anti-HCV Agents
HCV-induced hepatitis is one of the most debilitating diseases. The limited number of anti-HCV drugs and drug-resistance necessitate developing of new scaffolds with different mode of actions. HCV non-structural protein 5B (NS5B) is an attractive target for development of novel inhibitors of HCV replication. In this paper, new N'-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazi...
متن کاملThe anti-genomic (negative) strand of Hepatitis C Virus is not targetable by shRNA
Hepatitis C Virus (HCV) and other plus-strand RNA viruses typically require the generation of a small number of negative genomes (20-100× lower than the positive genomes) for replication, making the less-abundant antigenome an attractive target for RNA interference(RNAi)-based therapy. Because of the complementarity of duplex short hairpin RNA/small interfering RNA (shRNA/siRNAs) with both geno...
متن کاملSignalome-wide assessment of host cell response to hepatitis C virus
Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-κB pathways are suppressed, while the JAK...
متن کاملAnti-hepatitis C virus activity of tamoxifen reveals the functional association of estrogen receptor with viral RNA polymerase NS5B.
Hepatitis C virus (HCV) is a major causative agent of hepatocellular carcinoma. HCV genome replication occurs in the replication complex (RC) around the endoplasmic reticulum membrane. However, the mechanisms regulating the HCV RC remain widely unknown. Here, we used a chemical biology approach to show that estrogen receptor (ESR) is functionally associated with HCV replication. We found that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015